Classification of power system disturbances using support vector machines

نویسنده

  • Sami Ekici
چکیده

This paper presents a new approach for the classification of the power systemdisturbances using support vector machines (SVMs). The proposed approach is carried out at three serial stages. Firstly, the features to be form the SVM classifier are obtained by using the wavelet transform and a few different feature extraction techniques. Secondly, the features exposing the best classification accuracy of these features are selected by a feature selection technique called as sequential forward selection. Thirdly, the best appropriate input vector for SVM classifier is rummaged. The input vector is started with the first best feature and incrementally added the chosen features. After the addition of each feature, the performance of theSVMisevaluated. Thekernel andpenaltyparametersof theSVMaredeterminedbycross-validation. The parameter set that gives the smallest misclassification error is retained. Finally, both the noisy and noiseless signals are applied to the classifier given above stages. Experimental results indicate that the proposed classifier is robust andhasmorehigh classificationaccuracywith regard to theother approaches in the literature for this problem. © 2010 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Face Recognition using Eigenfaces , PCA and Supprot Vector Machines

This paper is based on a combination of the principal component analysis (PCA), eigenface and support vector machines. Using N-fold method and with respect to the value of N, any person’s face images are divided into two sections. As a result, vectors of training features and test features are obtain ed. Classification precision and accuracy was examined with three different types of kernel and...

متن کامل

Fault diagnosis in a distillation column using a support vector machine based classifier

Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...

متن کامل

Classification of Power Network Disturbances by Using the Support Vector Machine Method

This paper proposes a new method for classifying five common types of power system disturbances by using Support Vector Machines (SVMs). Equipped with the statistical learning theory, a SVM is found to be attractive in statistical-based characterization and classification of power system disturbance data. Apart from descriptions and discussions of the above issues, the paper also includes exper...

متن کامل

A QUADRATIC MARGIN-BASED MODEL FOR WEIGHTING FUZZY CLASSIFICATION RULES INSPIRED BY SUPPORT VECTOR MACHINES

Recently, tuning the weights of the rules in Fuzzy Rule-Base Classification Systems is researched in order to improve the accuracy of classification. In this paper, a margin-based optimization model, inspired by Support Vector Machine classifiers, is proposed to compute these fuzzy rule weights. This approach not only  considers both accuracy and generalization criteria in a single objective fu...

متن کامل

A comparative study of performance of K-nearest neighbors and support vector machines for classification of groundwater

The aim of this work is to examine the feasibilities of the support vector machines (SVMs) and K-nearest neighbor (K-NN) classifier methods for the classification of an aquifer in the Khuzestan Province, Iran. For this purpose, 17 groundwater quality variables including EC, TDS, turbidity, pH, total hardness, Ca, Mg, total alkalinity, sulfate, nitrate, nitrite, fluoride, phosphate, Fe, Mn, Cu, ...

متن کامل

Predicting cardiac arrhythmia on ECG signal using an ensemble of optimal multicore support vector machines

The use of artificial intelligence in the process of diagnosing heart disease has been considered by researchers for many years. In this paper, an efficient method for selecting appropriate features extracted from electrocardiogram (ECG) signals, based on a genetic algorithm for use in an ensemble multi-kernel support vector machine classifiers, each of which is based on an optimized genetic al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2009